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Navier Stokes

1. Yesterday we looked at NS in 0+1 D:

2. We would like to solve this in 2+1 D,        

but it turns out there are some problems
• Instabilities
• Violations of Causality

3. In order to investigate this we will look at a much simpler theory

de

dτ
= −

e + p− 4
3

η
τ

τ

Tµν = Tµν
0 − ησµν ∂µT

µν = 0



Diffusion Equation

1. Continuity Equation

2. + Fick’s Law

3. = Diffusion Eqn.

ji(x, t) = −D∇in(x, t)

�
∂t −D∇2

�
n = 0

∂tn+∇iji = 0



Diffusion Equation

1. Diffusion eqn. in 1+1D

2. Solution

n(x, t) =
1√
4πDt

� +∞

−∞
φ(y) exp

�
− (x− y)2

4Dt

�
dy

�
∂t −D∂2

x

�
n = 0

I.C.: n(x, t = 0) = φ(x)



Diffusion equation in 1+1 D
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Telegraph Equation

1. Continuity Equation

2. + Modified Fick’s Law

3. = Telegraph Eqn.

∂tn+∇iji = 0

�
∂t −D∇2

�
n = −τR∂

2
t n

ji(x, t) +D∇in(x, t) = −τR
∂ji
∂t



Telegraph Equation

1. Exercise:  Find analytic solution to telegraph equation

with the following initial conditions

2. Answer:

�
∂t −D∇2

�
n = −τR∂

2
t n

n(x, t = 0) = φ(x)

∂tn(x, t = 0) = ψ(x)

2et/2τRn(x, t) = φ(x+ vt) + φ(x− vt)

+
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2τR
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1. In case you really try to work this out you will need these integrals

Useful Integrals

i

2π
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−∞
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√
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√
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= I0
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Telegraph equation in 1+1 D

Region
excluded by

causality

Region
excluded by

causality

1. So it turns out that the proposed second order theory solves our problem 
of causality

2. wave front propagates out at v =

�
D

τR



Coming Back to the NS equations

1. Exercise: Recast the NS equation                       where

into the following form:

σµν = ∇µuν +∇νuµ − 2
3
∆µν∇λuλ

Tµν = Tµν
0 − ησµν

∂µT
µν = 0

De+ (e+ p)∇µu
µ =

η

2
σµνσµν

Duµ +
∇µp

e+ p
=

1

(e+ p)
∆µ

α∂β
�
ησαβ

�



Linearized NS equations

1. Let’s perform a linearized analysis of the NS equations

2. Start by perturbing the energy density and flow velocity

e(t,x) = e0 + δe(t, y)

uµ = (1,0) + δuµ(t, y)

De+ (e+ p)∇µu
µ =

η

2
σµνσµν

Duµ +
∇µp

e+ p
=

1

(e+ p)
∆µ

α∂β
�
ησαβ

�



Linearized NS equations

1. The linearized NS equations reduce to a diffusion equation

2. Let us consider a sinusoidal perturbation

3. We find a “dispersion relation” of the form

4. so we can estimate the speed of a diffusion mode with wavenumber k

∂tδu
z − η

(e0 + p0)
∂2
yδu

z = 0

ω =
η

(e0 + p0)
k2

�
∂t −D∇2

�
n = 0

v(k) =
dω

dk
= 2

η

(e0 + p0)
k

δuz(t, y) ∝ eωt−iky



Linearized NS equations

1. Let us modify the NS equations in the same was as in the diffusion case

2. Considering again a sinusoidal perturbation

3. Exercise: Show the diffusion speed at large k is finite and

�
∂t −D∇2

�
n = −τR∂

2
t n∂tδu

z − η

(e0 + p0)
∂2
yδu

z = −τR∂
2
t δu

z

lim
k→∞

dω

dk
=

�
η

τR(e+ p)

δuz(t, y) ∝ eiωt−iky



BRSSS stress energy tensor

1. BRSSS wrote down all possible second order gradients allowed by 
conformal invariance

where the vorticity is defined as

πµν = −ησµν + ητπ

�
�Dσµν�+ 1

d− 1
σµν∂ · u

�

+ λ1�σµ
λσ

νλ�+ λ2�σµλΩνλ�+ λ3�Ωµ
λΩ

νλ�

Ωµν ≡ 1

2
∆µα∆νβ (∂αuβ − ∂βuα)



BRSSS stress energy tensor

1. The equations of motion are

where         has been promoted to a dynamical variable evolving 
according to

πµν = −ησµν − τπ

�
�Dπµν�+ d

d− 1
πµν∂ · u

�

+
λ1

η2
�πµ

λπ
νλ� − λ2

η
�πµλΩνλ�+ λ3�Ωµ

λΩ
νλ�

Tµν = Tµν
ideal + πµν ∂µT

µν = 0

πµν



Recap: zeroth order solution

1. Yesterday, we found the zeroth order solution to the Boltzmann eqn.

2. We expanded in terms of ε

�
∂t + vip∂i

�
f(p,x, t) = −C[f,p]

f = f0 + �f1 + �2f2 + · · ·

Lf =
1

�
C[f,p]

C[f0,p] = 0 f0(P,X) = exp

�
pµuµ − µ

T

�



First order solution

1. In operator notation, f1 is the solution to the following intego-differential 
equation

2. where the collision operator is

Lf0 = C[f1|f0,p] + C[f0|f1,p]

C[f, g,p] = 1

p

�

q

�

q�

�

p�
|M|2(2π)4δ4 (P +Q− P � −Q�) [fq�gp� − fqgp]



Left hand side

1. We first need to evaluate

Lf0 ≡
�
∂t + vip∂i

�
f0(p,x, t) ≡

pµ

Ep
∂µf0(p,x, t)

pµ

Ep
∂µ exp

�
pαuα

T

�
= f0

�
pµpα∂µuα

EpT
+ pµ∂µ

�
1

T

��



Left hand side

1. Exercise: Show for a conformal theory that

2. And therefore

pµpα∂µuα

EpT
+ pµ∂µ

�
1

T

�
=

pµpασµα

2EpT

Lf0 = f0
1

2EpT
pµpνσµν



Relaxation time approximation

1. Let us use a very simplistic model for the collision operator

where

and

2. And we can solve for f1

Lf0 = f0
1

2EpT
pµpνσµν

Lf0 = CRT[f1,p]

CRT[f,p] = −f(p)− f0(p)

τR(Ep)

f1 − f0 ≡ δf = −f0
τR(Ep)

2EpT
pµpνσµν



Relaxation time approximation
1. The relaxation time sets the shear viscosity

2. Exercise: Starting with the definition of the stress-energy tensor

and the form of df we just worked out

get the following relation between the relaxation time and shear viscosity

T ij ≡ pδij − η�∂iuj� =
�

p

pipj

Ep
fo + δf(p)

δf = −f0
τR(Ep)

2EpT
pµpνσµν

η =
1

30T

�

p
E2

p fo τR(Ep)



Summary

1. We have our 2nd order equations of motion

2. And we know what is going on at the level of Kinetic Theory

3. So now we can go and solve

δf = −f0
τR(Ep)

2EpT
pµpνσµν

Tµν = Tµν
ideal + πµν ∂µT

µν = 0

πµν = −ησµν − τπ�Dπµν�+ · · ·



Elements of a hydrodynamic simulation

1. Initial Conditions

2. Solving

3. Freeze-out



Initial Conditions

1. The initial conditions are really outside the realm of hydrodynamics

2. But in order to solve we need to specify

3. Two of these are “easy”

4. What really controls everything is the energy density

                or                    or

T (x⊥, τ0), u
µ(x⊥, τ0),π

µν(x⊥, τ0)

uµ(x⊥, τ0) = 0

T (x⊥, τ0)e(x⊥, τ0) s(x⊥, τ0)

πµν(x⊥, τ0) = −ησµν = diag(0,+
2η

3τ
,+

2η

3τ
,−4η

3τ
)



Glauber Theory

1. The assumption is that the collision of two nuclei can be described by 
the incoherent superposition of an equivalent number of nucleon-nucleon 
collisions



1+1 D

1. The longitudinal pressure is initially lower in the viscous case
2. Less pdV work is done so the energy density depletes slower in viscous case
3. The larger transverse expansion at later times causes a quicker depletion of the 

energy density at later times
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2+1 D
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2+1 D
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Freeze-out

1. Ultimately experiments measure particle and it is necessary to convert 
the hydrodynamic information                              we just solved for 
into particle spectra

2. This is done using the “Cooper-Frye” formula

T (x), uµ(x),πµν(x)

E
d3N

d3p
=

1

(2π)3

�

Σ
dΣµP

µf(P,X)



Freeze-out

1. As an example lets freeze-out at fixed proper time

and we get the following result

dΣµ = (dV, 0, 0, 0)

E
d3N

d3p
=

1

(2π)3

�
τdηd2x⊥p

0f(P,X)



Freeze-out

1. Typically one chooses a freeze-out hyper-surface of constant temperature 
or energy density

2. In order to understand viscous corrections lets take the following 
alternative.

3. Yesterday we specified when hydrodynamics was applicable in 0+1 D

4. The expansion rate in 3+1 D is 

η

e+ p

1

τ
� 1

∇µu
µ



Freeze-out

1. Let’s freeze-out on contours of constant 
η

p
∂µu

µ ∼ τR∂µu
µ

η/s = 0.4

η/s = 0.2

η/s = 0.05



Freeze-out
1. Viscosity sets the necessary scale for freeze-out
2. And can possibly help us understand multiplicity scaling
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Viscous correction to spectra
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How does viscosity manifest itself in spectra?

1. Viscous correction to equation of motion        

                                                                                              
2. Viscous correction to spectra

3. In the above expression we have taken what is called the “quadratic 
ansatz” for the off-equilibrium distribution function corresponding to

∂µTµν = 0 Tµν = (�+ p)uµuν + pgµν−η�∂µuν�

E
d3N

d3p
=

ν

(2π)3

�

σ
fo+δf pµdσµ

where

δf = − η

sT 3
× f0(p)p

ipj�∂iuj�

τR ∝ Ep



We need to have a quantitative understanding
of δf and quadratic ansatz.

How does viscosity manifest itself in spectra?
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Reminder

1. We started with the Boltzmann equation in the RTA

Substitute                                          and find

2. We just showed results for the quadratic ansatz                 
but what about                    ?

∂tf + vp · ∂xf = −f(p)− f0(p)
τR(Ep)

f(p) = fo(p) + δf(p)

δf ∝ τR(Ep)
Ep

f0(p)pipj�∂iuj�

τR ∝ Ep

τR ∝ (Ep)
β



Notation
1. Most general form of off equilibrium correction is  

where                and  p̃ ≡ p

T
p̂i ≡ pi

|p|

δf = −χ(p̃)× f0p̂
ip̂j�∂iuj�



Two Extreme Limits
1. Quadratic: Relaxation time growing with energy

2. Linear: Relaxation time independent of Parton energy

3. As we will show reality is somewhere in between

τR ∝ Ep
dp

dt
∝ const. χ(p) ∝ p2

τR ∝ const.
dp

dt
∝ p χ(p) ∝ p



Connection between δf and viscosity

χ(p̃) =
120

Γ(6− α)
× η

sT
× p̃2−α

T ij ≡ pδij − η�∂iuj� =
�

p

pipj

Ep
fo + δf(p)

δf = −χ(p̃)× f0p̂
ip̂j�∂iuj� η =

1

15

�

p
foχ(p)p

So the form of δf is partially constrained by viscosity.

First moment of δf determines shear viscosity.



Two Extreme Limits
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Weakly coupled pure-glue QCD

1. Boltzmann equation

2. Substitute                                        and find

3. This integral equation can be inverted to obtain δf.

∂tf + vp · ∂xf = −C2↔2[f ]− C1↔2[f ]

f(p) = fo(p) + δf(p)

fo
pipj

TEp
�∂iuj� = −C2↔2[δf ]− C1↔2[δf ]



Weakly coupled pure-glue QCD
1. Three different modes of energy loss

1. Soft Scattering

2. Collisional

3. Radiative

q ∼
√

ET

q ∼ mD
dp

dt
∝ g4 log

�
T

mD

�

∆p

∆t
∝ g2

�
q̂Ep χ(p) ∝ p3/2

χ(p) ∝ p2

log p

χ(p) ∝ p2

dp

dt
∝ g4 log

�
p

mD

�

The forms of χ(p) at large momentum (including the constant) 
can be found analytically from the Boltzmann equation. 

Asymptotic Forms



Weakly coupled pure-glue QCD
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Weakly coupled pure-glue QCD
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